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Abstract—Image processing technologies such as image en-
hancement generally utilize linear arithmetic operations to ma-
nipulate images. Recently, Jourlin and Pinoli successfully used the
logarithmic image processing (LIP) model for several applications
of image processing such as image enhancement and segmentation.
In this paper, we introduce a parameterized LIP (PLIP) model
that spans both the linear arithmetic and LIP operations and
all scenarios in between within a single unified model. We also
introduce both frequency- and spatial-domain PLIP-based image
enhancement methods, including the PLIP Lee’s algorithm, PLIP
bihistogram equalization, and the PLIP alpha rooting. Computer
simulations and comparisons demonstrate that the new PLIP
model allows the user to obtain improved enhancement perfor-
mance by changing only the PLIP parameters, to yield better
image fusion results by utilizing the PLIP addition or image
multiplication, to represent a larger span of cases than the LIP and
linear arithmetic cases by changing parameters, and to utilize and
illustrate the logarithmic exponential operation for image fusion
and enhancement.

Index Terms—Alpha rooting (AR), histogram equalization
(HE), image enhancement, parameterized logarithmic image
processing (PLIP).

I. INTRODUCTION

IMAGE processing is the system of mathematically trans-
forming an image, generally to change some character-

istics [1]. This includes many applications such as image
enhancement, edge detection, object recognition, and noise
reduction. Providing digital images with good contrast and
detail is required for many important areas such as vision,
remote sensing, dynamic scene analysis, autonomous naviga-
tion, and biomedical image analysis [2]. Producing visually
natural images or modifying an image to better show the visual
information contained within the image is a requirement for
nearly all vision and image processing methods [3]. Methods
for obtaining such images from lower quality images are called
image enhancement techniques. Much effort has been spent
extracting information from properly enhanced images [4]–[8].

Manuscript received September 4, 2009; revised January 7, 2010 and
April 29, 2010; accepted July 2, 2010. Date of current version March 16,
2011. This work was supported in part by the National Science Foundation
under Grant HRD-0932339. This paper was recommended by Associate Editor
P. S. Sastry.

K. Panetta, Y. Zhou, and E. J. Wharton are with the Department of Electrical
and Computer Engineering, Tufts University, Medford, MA 02155 USA
(e-mail: karen@ece.tufts.edu; yzhou0a@ece.tufts.edu; ewhart02@ece.
tufts.edu).

S. Agaian is with the Department of Electrical and Computer Engineering,
University of Texas at San Antonio, San Antonio, TX 78249 USA (e-mail:
Sos.Agaian@utsa.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2010.2058847

The enhancement task, however, is complicated by the lack of
any general unifying theory of image enhancement as well as
the lack of an effective quantitative standard of image quality to
aid in the design of an image enhancement system.

Conventionally, image processing methods such as image
enhancement utilize linear operations to manipulate images.
Current research in image enhancement employs traditional
linear arithmetic to implement algorithms based on the hu-
man visual system [9]; deconvolution methods [10] or neural
models [11] attempting to undo image degradations; histogram
modification with hue preservation [12] and other histogram
modification techniques [13]–[17]; localized gradient and edge
information [18]; and transform-domain-based enhancement
techniques using Fourier, cosine, and wavelet transforms [19].

Current practice in image processing makes little use of
any standardized mathematically rigorous arithmetical struc-
ture specifically designed for image manipulation [20]. Using
linear image processing results in some side effects. First, when
resulting pixel intensities lie outside the image range, defined as
[0,M), they are clipped, causing a loss of information. Second,
linear operations typically do not yield results consistent with
the physical phenomena.

By solving these common problems in an image processing
context, Jourlin and Pinoli developed a logarithmic image
processing (LIP) model which is a mathematical framework
based on abstract linear mathematics [21]–[25]. It is further
studied by Deng [26], [27]. The LIP model contains several
specific algebraic and functional operations which can be used
to manipulate image intensity values in a bounded range. These
operations lead to new techniques to process images more accu-
rately. They generally make use of the logarithm, as transmitted
images combine by logarithmic laws and the human visual
system processes light logarithmically.

The LIP model has been shown to satisfy Weber’s Law
and the saturation characteristics of the human visual system
[27]–[31]. From a physical point of view, this LIP model is
physically justified in a number of aspects. For example, the
addition operation is consistent with the transmittance image
formation model and the saturation characteristic of the human
eye, the contrast definition based on subtraction is consistent
with Weber’s law, and the zero gray-tone function corresponds
to the highest intensity of an image. Additionally, the LIP
addition is edge preserving in the context of just noticeable
difference [31].

The LIP model has been successfully used for image en-
hancement [25]–[27], edge detection [24], [32], [33], image
filtering [34], and restoration and segmentation [23], [29], [35],
[36]. It also has the capability of enhancing color and medical
images [37] and performing the convolution operation [38].
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In this paper, we introduce a new parameterized LIP (PLIP)
model which includes LIP and linear arithmetic models as spe-
cial instances and also spans all the cases in between in a single
unified model. The new PLIP model will be shown to have the
capability of providing better image fusion and enhancement
performance than the LIP and linear arithmetic models.

The outline of this paper is as follows. Section II introduces
the new PLIP model and discusses its properties. Section III
presents the measure of enhancement by entropy (EMEE)
which will be used to quantitatively evaluate the performance
of the new PLIP model and image enhancement. Section IV
presents image fusion using different operations to show
the performance of the PLIP model in image manipulation.
Section V introduces three new enhancement algorithms using
the new PLIP model. Section VI provides representative results
of several experiments used to determine the best values of
the coefficients. Section VII shows comparative results demon-
strating the improved performance of several new PLIP-based
enhancement algorithms. Section VIII is a discussion of results,
and some concluding comments are made.

II. PLIP

In this section, we introduce a new PLIP model by extending
the innovative concept of the traditional LIP model introduced
by Jourlin and Pinoli [21]. We address the properties of the new
PLIP model and some further discussions.

A. PLIP Operations

The traditional LIP model replaces the linear arithmetic oper-
ations (addition, subtraction, and multiplication) with nonlinear
operations, which more accurately characterizes the nonlinear-
ity of computer image arithmetic. This LIP model is based
on gray-tone functions g(i, j) which model light absorption
filters. A uniform light source is shone through a filter, and
the intensity image is projected onto a screen. In addition, two
filters are placed in series. For subtraction, filters are removed,
and so forth. The LIP operations shown in Table I model these
interactions [22], [26].

A PLIP is presented here. The arithmetic operations make
use of a parameterized gray-tone function g(i, j). The PLIP
operations are shown in Table I.

The μ(M) value used to calculate the gray-tone function
could be image dependent, such as the maximum value of the
image, or it could be some greater value, such as μ(M) = 1026.
For simplicity, we use the linear case of μ(M) = aM + b,
where a and b are constants to be determined experimentally.

While γ(M), k(M), and λ(M) can be any functions as a
general form, here, we provide the most straightforward case.
For other purposes, these could be more complicated functions.
It is also noted that addition and scalar multiplication use the
same function γ(M). This is because scalar multiplication is
an extension of addition, adding the image to itself c times.

In addition, we propose an exponential coefficient β to the
fundamental isomorphism function ϕ̃ used for multiplication.
In the traditional LIP model, ϕ is the fundamental isomorphism
and converts the gray-tone function to optical light density [21],
[23], [25]. By adding this exponential coefficient β, we can
fine-tune the multiplication and adjust the sensitivity to either
the dark end of the pixel intensity range (small β) or the bright

TABLE I
SUMMARY OF THE LIP AND PLIP ARITHMETIC OPERATIONS

end of the pixel intensity range of [0,M) (large β). This better
models the varying response of the human eye at high light
intensity versus low light intensity [39] and allows a multiplica-
tive combination without going to saturation. The best value of
β is chosen by performing PLIP-based enhancement algorithms
or PLIP image multiplication with varying β and assessing the
resulting images using the measure of image enhancement.

Since practical applications require exponential operators,
which are simply the value multiplied by itself many times,
we use the PLIP isomorphic transform and inverse isomorphic
transform to denote the PLIP exponential operation

g2
1 = g1∗̃g1 = ϕ̃−1 (ϕ̃(g1) • ϕ̃(g1)) = ϕ̃−1

(
ϕ̃(g1)2

)
. (1)

As the associative property holds for grayscale multiplica-
tion, it can be shown that a similar derivation works for the
cube of a number as well

g3
1 = g1∗̃g1∗̃g1 = g1∗̃ϕ̃−1

(
ϕ̃(g1)2

)
= ϕ̃−1

(
ϕ̃(g1) • ϕ̃

(
ϕ̃−1

(
ϕ̃(g1)2

)))
= ϕ̃−1

(
ϕ̃(g1) • ϕ̃(g1)2

)
= ϕ̃−1

(
ϕ̃(g1)3

)
. (2)

This is extended to the general case, giving PLIP exponential,
which will be used in Section V for the PLIP alpha rooting (AR)
algorithm

gn
1 = ϕ̃−1 (ϕ̃(g1)n) (3)

where n is a positive integer.
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Fig. 1. PLIP operations.

B. Properties of the PLIP Models

1) In the PLIP model, linear arithmetic operations are re-
placed with new operations in the same manner as the
traditional LIP model [37], [40].

2) The PLIP operations revert to the traditional LIP
cases when μ(M) = γ(M) = k(M) = λ(M) = M and
β = 1.

3) The PLIP operations revert to linear arithmetic operations
when γ(M), k(M), and λ(M) approach the infinity and
β = 1. (The mathematic proofs of this property can be
found in Appendix A.)

4) The PLIP operations can generate more cases between
the two extreme cases of the LIP and the linear arithmetic
operations when the parameters μ, γ, k, and λ change
within [M,∞), as shown in Fig. 1.

5) The output ranges of the PLIP operations. (Mathematical
analysis can be found in Appendix B.)
a) If the pixel intensity range of the input image f(i, j)

is [0,M), the range of the PLIP gray-tone function
g(i, j) is (μ(M) − M,μ(M)]. It will be the same as
the LIP range (0,M ] when μ(M) = M .

b) If the input gray tone is in the range (0, γ(M)], the
range of the PLIP addition and scalar multiplication
will be (0, γ(M)].

c) If the input gray tone is within (0, k(M)], the range of
the PLIP subtraction will be (−∞, k(M)].

6) It can be shown that PLIP operations obey the laws of
associativity, commutativity, a unit element, and distribu-
tive properties.

7) The new operations satisfy Jourlin and Pinoli’s four fun-
damental requirements of an image processing frame-
work [28]–[30] in addition to a fifth requirement we have
introduced. The following are the requirements.
a) The framework must be based on a physically relevant

image formation model.
b) The mathematical operations must be consistent with

the physical nature of images.
c) The operations must be computationally effective.
d) It must be practically fruitful.
e) It must minimize loss of information.

This fifth requirement is essentially stating that the model
must not damage either signal. In essence, when a visually
“good” image is added to another visually “good” image, the
result must also be “good.” This is of particular importance, for
example, when receiving information from two sensors which
must be somehow fused together.

C. Discussion

LIP operations model light absorption filters. By introducing
several parameters, PLIP extends this LIP concept and offers
users flexibility to design more specific light filters by changing

parameters. Furthermore, more coefficients offer the new PLIP
model more robust characteristics to meet more specific and
complex requirements in different applications.

Although the strong performance of the LIP models with
regard to the human visual system has been shown, there still
remains a wide range of tasks which the human visual system
can perform effortlessly, while complex algorithms are unable
to match this performance. While Weber’s and Fechner’s laws
govern the human visual system for a general case, there is
tremendous variability in the human visual system, and for
individuals, there are variabilities between different people and
between any different imaging sensors.

Parameterizing using the PLIP model allows for this “per-
sonalization.” In the following section, we will discuss how the
PLIP model can solve some challenging issues in image fusion.

III. EMEE

To designate a result as most favorable, it is necessary to
establish some objective criteria for quantifying results [41].
Automatic image enhancement based on human visual require-
ments remains a very challenging problem. There is no single
method of image enhancement method that works well for all
images [42]. This problem becomes more pressing when one
needs to enhance thousands of images in an automated setting.

The EMEE has been proven as an effective measure for
evaluating image enhancement quality [41]. This measure is
based on the same psychovisual laws which form the basis of
the LIP and PLIP models. Therefore, it establishes an a priori
link between the two [41]–[43]. This makes the EMEE effective
for training as a cost function.

The EMEE is calculated by dividing an image I(i, j)
into k1 × k2 blocks, obtaining the local maximum (Imaxk,l)
and minimum (Imink,l) within each block individually, then
processing them using the following equation [43]:

EMEEα,k1,k2

=
1

k1k2

k1∑
l=1

k2∑
k=1

[
α

(
Imaxk,l

Imink,l

)α

ln
(

Imaxk,l

Imink,l

)]
(4)

where α is a constant which can help to select parameters.
We choose α = 1 and the block size 4 × 4 for calculating the
EMEE results in this paper.

IV. IMAGE FUSION USING PLIP

Image enhancement systems rely on performance of their
basic arithmetical components. We study these most basic
building blocks for improved performance.

Since addition is a form of fusion, it is a natural requirement
to combine images in a more meaningful fashion. Ideally,
added images will be representative of the originals without
unnaturally becoming too dark or too bright. In general, the
procedures of the LIP and PLIP additions are the same. The
original images first are converted into gray-tone images and
then performed by the addition operation. The added images are
transformed back into grayscale images using the same gray-
tone function.

Fig. 2 shows the need for training. It is the combination
of an image of a tank with an image of several rocks, where
the resulting image should appear to have the tank navigating
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Fig. 2. Fusion of two grayscale images using different image formats and
different addition operators, with the minimum and maximum pixel intensity
values shown in brackets. (a) Original rock image. (b) Original tank image.
(c) Linear addition of two images both in uint8 format. (d) Linear addition of
two images both in double format. (e) LIP addition of images of two images
both in uint8 format (M = 256). (f) LIP addition of two images both in double
format (M = 256). (g) PLIP addition of two images both in double format
(μ(M) = γ(M) = 400). (h) PLIP addition of two images both in double
format (μ(M) = 500 and γ(M) = 1000). (i) PLIP addition of two images
both in double format (μ(M) = 800 and γ(M) = 2000).

through the rocks. The pixel intensity ranges for each image
are shown at the bottom of the images. For example, [21, 168]
in Fig. 2(a) means that the minimum and maximum values of
the image are 21 and 168, respectively.

For original images in uint8 format, the resulting images
of their linear arithmetic addition are always brighter than
the originals. This can make images too bright as shown in
Fig. 2(c). However, the resulting images of the LIP addition are
always darker than the originals. This makes images generally
too dark as shown in Fig. 2(e). This is because many of the
pixel intensity values are outside the grayscale range [0, 255].
The pixel values are simply set to 255 for those greater than
255 and to zero for those less than zero. This results in a loss of
information.

If the original images are in double format, the results of the
linear and LIP additions show better visual quality than those
in uint8 format as shown in Fig. 2(d) and (f). Therefore, we use
only the double image format for computer simulation in the
rest of this paper.

The LIP model maintains the values in the range, and the
output is more representative. The result of the linear addition
is slightly brighter as shown in Fig. 2(d). The result of the
LIP addition looks somewhat darker than originals as shown
in Fig. 2(f). This also demonstrates the limitation of LIP arith-
metic wherein some output images can be visually damaged.
The resulting images are dark and need to be improved.

Fig. 3. Fusion of two gray-tone images using LIP and PLIP additions.
The minimum and maximum pixel intensity values are shown in brackets.
(a) Gray-tone image of the Pentagon image using the LIP equation g(i, j) with
M = 256. (b) Gray-tone image of Copter image using the LIP equation g(i, j)
with M = 256. (c) Linear addition. (d) LIP addition (M = 256). (e) PLIP
addition (μ(M) = 500 and γ(M) = 300). (f) PLIP addition (μ(M) = 1000
and γ(M) = 500).

The PLIP model addresses these issues as shown in
Fig. 2(g)–(i). These results are visually pleasing and representa-
tive images with the selection of appropriate PLIP parameters.
The effects of changing μ(M) and γ(M) can allow for better
contrast enhancement.

Fig. 3 shows one of the advantages of the PLIP model. The
pixel intensity ranges for all images are also shown in brackets
in the bottom of the corresponding images. The two input
images are gray-tone functions of the Pentagon and Copter
images, respectively. The linear and LIP additions can result
only gray-tone images as shown in Fig. 3(c) and (d). However,
the PLIP addition can obtain not only gray-tone images but also
the grayscale images by selecting appropriate parameters μ(M)
and γ(M). Vice versa, if the input images are grayscale images,
the PLIP addition can obtain an added image with a gray-tone
format with specific values for μ(M) and γ(M).

The β parameter gives a greater control over the logarithmic
function for the multiplication of two images. It can assign
increasing weight to the higher or lower end of the pixel
saturation range. Fig. 4 shows that, when the parameter λ(M)
is negative, the β plays an important role for the PLIP mul-
tiplication of two images. The original intensity images first
are converted to gray-tone functions, processed by the PLIP
image multiplication, and then transformed back into intensity
images by the same gray-tone equation in Table I. Fig. 3(c)
shows a case of the LIP image multiplication. The resulting
image is unrecognizable. This is the same as the case of the
PLIP multiplication with λ(M) = 256 and β = 1. However, for
the cases of negative λ(M) as shown in Fig. 4(d)–(f), β values
yield visually appealing images. This is another advantage of
the PLIP model.

V. NEW PLIP-BASED IMAGE

ENHANCEMENT ALGORITHMS

The goal of image enhancement techniques is to improve the
characteristic or quality of an image, such that the resulting
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Fig. 4. Testing the optimal β using the PLIP image multiplication. (a) Original
Pentagon image. (b) Original Copter image. (c) Traditional LIP image mul-
tiplication (β = 1). (d) PLIP image multiplication (μ(M) = 500, λ(M) =
−500, and β = 5). (e) PLIP image multiplication (μ(M) = 1026, λ(M) =
−1026, and β = 10). (f) PLIP image multiplication (μ(M) = 4100, λ(M) =
−1000, and β = 19). This shows that β plays an important role for PLIP image
multiplication when λ(M) is negative.

image is better than the original by some specific criteria
[44]. Current research in image enhancement covers such wide
topics as algorithms for color correction [45]–[47], JPEG-based
enhancement for the visually impaired [48], and histogram
modification techniques [12], [13], [43], [49].

In [50], the authors state that the main challenge remains
in the following application areas: development of high-quality
image enhancement methods that do not destroy the color code
information, development of quantitative measures of view
ability for such images, and automating the process of image
enhancement that meets human expert approval. These issues
are addressed in detail in this paper.

There are several commonly used enhancement methods
such as Lee’s algorithm (LA) [51], bihistogram equalization
(BHE) [15], and alpha rooting (AR) [52]. In this section, we
present three novel PLIP-based image enhancement algorithms,
namely, PLIP LA, PLIP BHE, and PLIP AR. These are ac-
complished by simply changing the linear arithmetic with the
new PLIP operations and varying the parameters. We will use
these algorithms to demonstrate the improved enhancement
performance using the PLIP. For simplicity, we choose μ(M) =
γ(M) = k(M) = λ(M) for computer simulation.

A. PLIP Lee’s Algorithm

In 1980, Lee proposed a simple algorithm for image enhance-
ment, which can be expressed as [51]

F ′(i, j) = θA(i, j) + ρ + ζ [F (i, j) − A(i, j)] (5)

where F (i, j) and F ′(i, j) represent the pixel brightness values
of the original and processed images; A(i, j) is the arithmetic
mean brightness value of an n × n window that is centered
on the pixel position (i, j); and θ, ρ, and ζ are the weight
coefficients.

LA first decomposes an image into two parts, a smooth
image and a difference image. These images are then weighted

Fig. 5. Comparison of PLIP LA with LIP LA. (a) Original image. (b) Image
enhanced by LIP LA (M = 256, η = 0.5, σ = 100, and δ = 0.15). (c) Image
processed with PLIP LA (μ(M) = γ(M) = k(M) = λ(M) = 500, η =
0.42, σ = 450, and δ = 0.2). (d) Original image. (e) Image enhanced by LIP
LA (M = 256, η = 0.4, σ = 200, and δ = 0.19). (f) Image processed with
PLIP LA (μ(M) = γ(M) = k(M) = λ(M) = 600, η = 0.4, σ = 300, and
δ = 0.25).

and recombined. The algorithm was extended by using the
traditional LIP operators for image enhancement [27], [31],
[40]. It can be further improved by using PLIP operators, called
PLIP LA, which is defined by the following expression:

f ′(i, j) = η⊗̃a(i, j)⊕̃σ⊕̃δ⊗̃
[
f(i, j)Θ̃a(i, j)

]
(6)

where f ′(i, j) is the output gray-tone function; f(i, j) is the
input gray-tone function; a(i, j) is the PLIP average of the
pixels surrounding the given pixel; and η, σ, and δ are user-
defined operating constants.

To demonstrate the effects of the PLIP LA, we compare
enhanced images by using the traditional LIP and PLIP models,
as shown in Fig. 5. The PLIP model allows for resulting images
to both get brighter and darker appropriately, yielding improved
contrast. The enhanced images using traditional LIP in Fig. 5(b)
and (e) show improved contrast, but some details are not as
clear as they could be. The enhanced images using the PLIP not
only have improved contrast but also show all details clearly, as
shown in Fig. 5(c) and (f). The EMEE values confirm that the
PLIP LA outperforms the LIP LA.

It can also be seen that the proposed PLIP LA is more
sensitive to noise than LA. Since noise is generally in the higher
frequency components and the PLIP LA combines a high-pass
image with a low-pass image, it can emphasize any noise in the
image.

B. PLIP BHE

BHE [15] is based on standard histogram equalization (HE).
A histogram of a gray image is the discrete distribution func-
tion of the gray levels of the pixels. When a photograph is
transformed so that all the gray levels occur equally often, the
result tends to have a higher contrast [14]. Standard HE uses
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a cumulative density function to attempt to force a uniform
distribution for the image, according to the following formula:

f(x) = Xmin + (Xmax − Xmin) · C(x) (7)

where x is the input pixel intensity within the range
[Xmin,Xmax], f(x) is the output pixel intensity, Xmin and
Xmax are the minimum and maximum values for the desired
output range, and C(x) is the cumulative distribution function,
where C(Xmax) = 1.

BHE introduces a threshold parameter to better control over
the enhancement and to obtain a better image [15]–[17]. It first
decomposes an image into two subimages based on a global
threshold. These two subimages are enhanced using standard
HE separately.

Many BHE-based methods have been developed to preserve
brightness by setting the threshold at the mean gray level [15],
by selecting the threshold as the median value in an attempt to
maximize entropy [16], and by predicting the brightness error
as a cost function to select the threshold [17].

To improve the performance of BHE, we introduce a PLIP-
based BHE defined by

f(x) =
{

Xmin⊕̃CL(x)⊗̃(XT Θ̃Xmin), x ≤ XT

XT ⊕̃CH(x)⊗̃(XmaxΘ̃XT ), x > XT

(8)

where XT is the threshold for separating the input image into
two subimages and CL(x) and CH(x) are the cumulative distri-
bution functions of the low and the high subimage, respectively.
The PLIP scalar multiplication ⊗̃ can be replaced by ∗̃ for
different applications.

Fig. 6 compares BHE with the linear, LIP, and PLIP op-
erations. Fig. 6(a)–(d) shows the linear case. The enhanced
result is satisfactory but can be improved upon. Fig. 6(e)–(g)
shows the LIP BHE, and Fig. 6(h)–(j) shows the PLIP case. The
PLIP enhanced image improves the results using linear and LIP
arithmetic. It has a more consistent appearance between the two
subimages and better details in the truck and shrubberies. This
assessment is reinforced by an improved EMEE score.

To show the improvement of using PLIP BHE, we summa-
rize enhancement results using the EMEE measure. Table II
compares resulting EMEE values for a number of images
processed by BHE with the LIP and PLIP. For each image,
the PLIP BHE yields higher EMEE values compared with the
LIP BHE.

C. PLIP Alpha Rooting

AR is a straightforward and effective transform enhance-
ment algorithm. AR-based methods have been used for image
enhancement such as a preprocessing enhancement stage for
edge detection [53], medical image enhancement [54], [55],
and enhancement in the JPEG domain for people with visual
impairment [48].

AR first transforms the original image into a transform do-
main by using some orthogonal transform such as the discrete
Fourier transform (DFT). It then modifies the magnitude of
the transform coefficients, while the phase is kept invariant.
The enhanced image is obtained by performing the inverse

Fig. 6. Comparison of BHE methods with linear and PLIP arithmetic, show-
ing improved performance of the PLIP. (a) Original image. (b) (Top) High
subimage and (bottom) low subimage separated from the original image.
(c) (Top) High subimage and (bottom) low subimage are enhanced linearly.
(d) Linearly enhanced image. (e) Traditional LIP enhanced low subimage.
(f) Traditional LIP enhanced high subimage. (g) Traditional LIP enhanced
image with threshold 160 (M = 256). (h) PLIP enhanced low subimage.
(i) PLIP enhanced high subimage. (j) PLIP enhanced image with threshold 97
(μ(M) = γ(M) = k(M) = λ(M) = 200).

TABLE II
COMPARISON EMEE RESULT USING TRADITIONAL

LIP BHE TO PLIP BHE

transform [19], [41], [52], [55]. The magnitude of coefficient
is modified by

O(p, s) = X(p, s) × |X(p, s)|α−1 (9)

where O(p, s) and X(p, s) are the DFTs of the output and input
images, respectively, and 0 < α < 1.

To demonstrate a new application of the AR for logarithmic
models as well as a new application of the PLIP exponential
operation for image enhancement in the transform domain, we
introduce a new PLIP AR algorithm. It applies PLIP opera-
tions, namely, the PLIP exponentiation given in (3) for the
AR as defined in (9). The input and output transforms of the
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Fig. 7. Comparison of traditional AR, LIP, and PLIP AR by using different
parameter values. (a) Original image from Fig. 2(f). (b) Image enhanced by the
traditional AR defined in (9) (α = 0.9). (c) Image enhanced by the LIP AR
(α = 0.97). (d) Image enhanced by the PLIP AR (μ(M) = λ(M) = 800,
α = 0.98, and β = 0.45). (e) Image enhanced by the PLIP AR (μ(M) =
λ(M) = 800, α = 0.98, and β = 1). (f) Image enhanced by the PLIP AR
(μ(M) = λ(M) = 800, α = 0.98, and β = 1.5). These show that the image
using μ(M) = λ(M) = 800 and β = 1 is the most visually natural, and
higher values of β give more enhancement of textures and objects.

gray-tone images (X(p, s) and O(p, s)) are used. The PLIP AR
is defined by

O(p, s) = ϕ̃−1
(
ϕ̃ (|X(p, s)|)α−1

)
• X(p, s) (10)

where ϕ̃(.) and ϕ̃−1(.) are the PLIP isomorphic transform and
PLIP inverse isomorphic transform, respectively.

Fig. 7 shows the new PLIP AR for image enhancement.
Fig. 7(a) shows the original image which is generally too dark.
Fig. 7(b) shows the result enhanced by traditional AR. The
enhanced image shows improved contrast, but it is slightly
unnatural. LIP AR obtains an enhanced image with a more
visually natural appearance as shown in Fig. 7(c). Fig. 7(d)–(f)
shows the results for several values of PLIP parameters. These
demonstrate how change of the PLIP parameters affects the
enhanced images.

The LIP can be considered as a special PLIP case for
μ(M) = λ(M) = 256. The effect of λ(M) is not great com-
pared to images shown in Fig. 7(c) and (e). There are some
minor changes in the overall contrast. Images in Fig. 7(d)–(f)
demonstrate that changing the β parameter can result in a major
effect on the output image. Changing β forces the users to
change the α parameter in (9) appropriately. The enhanced
images with lower β are generally more saturated in the overall
appearance as shown in Fig. 7(d). However, the larger β shows
better performance for enhancing textures and objects as shown
in Fig. 7(f).

VI. METHODS TO TRAIN THE PLIP

In this section, we present the training system used to select
the best values for the PLIP parameters. This is accomplished
by choosing the local extrema from the plot of the EMEE versus
the parameters.

Fig. 8. Effect of changing μ(M) can be seen while keeping the other parame-
ters the same (λ(M) = 512). (a) Original image with maximum intensity 169.
(b) Original image with maximum intensity 203. (c) Their collective maximum
μ(M) = 203. (d) μ(M) = 300. (e) μ(M) = 500. (f) μ(M) = 600.

The best (optimal) parameter is obtained if the following
condition is satisfied:

EMEEoptimal = max
local

(EMEE(α, μ, γ, k, λ, β)) (11)

where EMEEoptimal is the optimized EMEE value of the
enhanced image, maxlocal(X) is a function to obtain the local
maximum value of X , and EMEE(α, μ, γ, k, λ, β) is the
EMEE measure result when the parameters α, μ, γ, k, λ, and β
change.

We use these parameters to obtain the best enhanced images.
The results will be verified by the EMEE values and visual
assessment.

A. Assessment by EMEE Values

To train the parameters μ, γ, k, and λ, we used two methods.
We tested the different atomic operations individually and also
tested several enhancement algorithms. We performed these
studies using several different values of the PLIP parameters
and compared the resulting images.

We first demonstrate the improved performance by training
only the μ(M) value using PLIP addition of two images shown
in Fig. 8(a) and (b). μ(M) is used to calculate the gray-tone
functions for two images. The results using the maximum value
of the two images collectively and μ(M) = 300 have a similar
visual appearance as shown in Fig. 8(c) and (d). The major
difference between them is in the background. By using the
maximum value of the two images collectively, the background
in the truck image is given higher values than that in Fig. 8(d).
This helps to hide some of the ripples in the sand as shown in the
lower left hand corner of the image. The images in Fig. 8(e) and
(f) are more visually appealing images. The image in Fig. 8(e)
has a higher EMEE value.

We test the scenario where different operations use different
values for the parameters. Many important properties such as
inverse operations (g1⊕̃g2Θ̃g2 = g1) are important theoreti-
cally and practically. They may require that the parameters are
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Fig. 9. Demonstration of the case where the parameters are not equal.
(a) Original Lena image. (b) Original Pentagon image. (c) Addition of Lena and
Pentagon using γ(M) = 1026. (d) Subtraction of (a) from (c) (k(M) = 256).
(d) Subtraction of (a) from (c) (k(M) = 512). (f) Subtraction of (a) from (c)
(k(M) = 1026). This shows subtraction using the correct value for k(M).

Fig. 10. Effects of changing the parameter are demonstrated using simple
images processed with traditional HE. Images (a)-(c) show the Arctic Hare
image, and images (d)-(f) show the bed image, processed using HE and with
values of the parameters as shown above the images. This shows that even
though other values may produce good results, using γ, k, and λ = 1026 yields
good results for the general case.

the same. We test the practical effect of using different values
for the parameters.

Fig. 9 shows an example of the most basic operations. An
image is added to and subtracted from another image. In Fig. 9,
the Pentagon image is added to Lena using γ(M) = 1026 and
then subtracted using various values for k(M). As expected,
only the image where γ(M) = k(M) matches the original Lena
image. In the images with k(M) < γ(M), the Pentagon image
slowly fades out as k(M) gets closer to γ(M). While this is a
theoretical issue, it could be used in practical applications such
as data hiding.

Other values for these parameters may work well in some
cases. Fig. 10 shows that γ = k = λ = 1026 generally yields

Fig. 11. EMEE versus γ(M) versus k(M) for Pentagon image processed by
using PLIP BHE (threshold is 140 and μ(M) = 1026). Note that the curve in
this figure uses the logarithmic values of EMEE results to show the EMEE peak
changes only for the display purpose.

Fig. 12. Testing the optimal γ(M) and k(M) values with PLIP BHE.
(a) Original Pentagon image. (b) Enhanced image (threshold = 140, μ(M) =
1026, γ(M) = 500, and k(M) = 500). (c) Enhanced image (threshold =
140, μ(M) = 1026, γ(M) = 500, and k(M) = 300).

visually appealing images. These can be verified by EMEE
measure results.

B. EMEE Plot Evaluation

The practical usefulness of differing parameters is tested by
using PLIP BHE. Fig. 11 shows that the training of the PLIP can
improve the performance of image enhancement. The original
images are enhanced by PLIP BHE using different values for
parameters γ(M) and k(M). This study was performed for
many images.

Fig. 11 shows only the results for the Pentagon image. These
results use μ(M) = 1026 and a fixed threshold value of 140. In
order to highlight the EMEE peak value changes, Fig. 11 shows
the logarithmic values of EMEE measure results.

Fig. 12 shows the enhanced images using parameters selected
from the EMEE plot in Fig. 11. The better enhanced image is
shown in Fig. 12(b). This image has the better contrast and is
visually appealing. The EMEE values confirm this.

Fig. 13 shows the effect of the Lena image using different
values for the parameters. The threshold value is fixed to 140.
We attempt to obtain better enhanced images by changing only
the PLIP parameter γ(M). In the first example, Fig. 13(a)–(c)
shows the results using a fixed value of k(M) = 800. The
resulting image using γ(M) = k(M) = 800 is too dark. How-
ever, when the peak at γ(M) = 1280 on the EMEE curve
in Fig. 13(c) is selected, the resulting image shows improved
contrast as shown in Fig. 13(b).

The second example shown in Fig. 13(d)–(f) shows a similar
case using k(M) = 500. When the parameters are the same
(γ(M) = k(M) = 500), the output image shown in Fig. 13(d)
is too bright. When the measure in Fig. 13(f) is used to select
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Fig. 13. Practical effect of using different PLIP parameters while maintaining
fixed enhancement parameters. (a) and (d) show enhancement results using
equal PLIP parameter values. (a) Enhanced image (k(M) = γ(M) = 800).
(b) Enhanced image using k(M) = 800 and γ(M) = 1280. (d) Enhanced
image (k(M) = γ(M) = 500). (e) Enhanced image using k(M) = 500 and
γ(M) = 526. (b) and (e) show improved enhancement results when the γ(M)
parameter is tuned independently of k(M) using the measure in (c) and (f).

Fig. 14. Testing the optimal μ(M) values for image enhancement using
PLIP LA. (a) EMEE plot (γ(M) = k(M) = 800). (b) EMEE plot (γ(M) =
k(M) = 1026). (c) EMEE plot (γ(M) = k(M) = 4100). (d) Enhanced
image (μ(M) = 400). (e) Enhanced image (μ(M) = 250). (f) Enhanced
image (μ(M) = 250). This shows that γ(M) = k(M) = 4100 and μ = 250
provide the most visually appealing image.

the γ(M) parameter, γ(M) = 526 can yield an output image
with improved contrast. However, from a practical standpoint,
the user can obtain more visually pleasing enhanced images by
modifying these parameters separately.

Fig. 14 shows the enhanced images by training μ(M)
using EMEE plots for PLIP LA. Fig. 14(a)–(c) shows the
EMEE plots using γ(M) = k(M) = 800, γ(M) = k(M) =
1026, and γ(M) = k(M) = 4100, respectively. The enhanced
clock images shown Fig. 14(d)–(f) are obtained by using pa-
rameters selected from these plots. The enhanced image in
Fig. 14(f) shows the better visually appealing and better EMEE
measure value than other two.

Fig. 15. Testing the optimal β and λ(M) values for image enhancement using
PLIP AR. (a) EMEE plot (λ(M) = 256). (b) EMEE plot (λ(M) = 1026).
(c) EMEE plot (λ(M) = 4100). (d) Enhanced image (β = 1.1). (e) Enhanced
image (β = 1). (f) Enhanced image (β = 1.2). This shows that λ(M) = 4100
and β = 1.2 provide the most visually appealing image.

The parameter β has control over the PLIP isomorphic
transform and its inverse transform used for the PLIP image
multiplication. We train this parameter using the EMEE plot.
The PLIP AR algorithm is used to enhance images by changing
values of β and parameter λ(M). Fig. 15 shows the EMEE
plot to train the parameters β and λ(M). The best operat-
ing parameters are chosen by using the EMEE measure. The
enhancement algorithm is run for different values of β. The
EMEE values and visual inspection of the enhanced results
show that parameters β = 1.2 and λ(M) = 4100 yield a more
visually pleasing enhanced image with better contrast as shown
in Fig. 15(f).

VII. ENHANCEMENT COMPARISONS

In this section, we compare the presented PLIP-based en-
hancement algorithms with several enhancement algorithms
with linear and LIP operations. This is to demonstrate how
the PLIP operations improve the enhancement performance.
We have shown that several possible values and combina-
tions of parameters can improve enhancement performance.
For simplicity, however, we choose μ(M) = γ(M) = k(M) =
λ(M) = 1026 for computer simulations.

A. Comparative Results

Fig. 16 shows the original images used for this study. The
pentagon, copter, Lena, plane, tank, and arctic hare images
are commonly used images. The bed image is a professionally
captured image with nonuniform illumination. The business
image is a professionally captured image with noise added. The
truck and plant images are aerials with atmospheric noise and
low definition. Cave and rocks are two images captured by a
cell phone with a digital camera.

To show the enhancement performance of the presented
PLIP-based algorithms, all 12 images in Fig. 16 are processed
by the HE, LA, AR, LIP LA, LIP BHE, PLIP LA, PLIP AR,
and PLIP BHE.
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Fig. 16. Original images used to test the proposed methods. (a) Pentagon.
(b) Copter. (c) Lena. (d) Plane. (e) Tank. (f) Arctic hare. (g) Bed. (h) Business.
(i) Truck. (j) Plant. (k) Cave. (l) Rocks.

Fig. 17. Comparison of results for the cave image enhanced using (a) HE,
(b) AR, (c) LIP LA, (d) LIP BHE, (e) PLIP LA, and (f) PLIP BHE. This shows
that PLIP-based algorithms have better results visually.

Fig. 17 shows sample results for one of these images, i.e.,
cave [Fig. 16(k)]. The resulting images demonstrate the contrast
stretching effect by the enhanced algorithms. HE enhances the
dark portions of the image shown in Fig. 17(a). However, the
image is unnaturally bright. AR enhances the bright portions

of the image shown in Fig. 17(b). Nevertheless, many of the
details in the darker background are difficult to see.

The LIP and PLIP LAs give similar results as shown in
Fig. 17(c) and (e). They enhance both the dark and bright por-
tions of the image. Their resulting images are visually pleasing
in which all details are visible. PLIP LA gives slightly better
definition. The output image of LIP BHE in Fig. 17(d) shows
improved performance compared to traditional HE. However,
the result of PLIP BHE shows all details in the bright fore-
ground and the dark background as shown in Fig. 17(f).

Fig. 18 shows the enhanced results of all 12 test images
by HE, AR, LIP LA, and PLIP BHE. The results verify that
the PLIP BHE show better enhancement performance for each
image.

B. Subjective and Objective Evaluation

Two evaluation methods are used to assess the performance
of these enhancement techniques. The first is a subjective
evaluation method to visually assess the enhanced images by
using the mean opinion score (MOS) recommended by ITU-T
[56]. The MOS intends to determine which are most visually
pleasing for a human observer. The second method uses the
EMEE measure as an objective evaluation tool.

In the subjective evaluation, nine human interpreters visually
evaluated all enhanced results of 12 images. Each image was
given a MOS score of 1–5, where a score of five indicates the
best quality. The results in Table III are the average value of the
scores given by all human interpreters.

The average score at the bottom of Table III for each en-
hancement algorithm shows that PLIP BHE, on average, yields
more visually appealing enhanced images. This subjective eval-
uation shows that PLIP BHE outperforms the other algorithms.

However, it is necessary to use an objective criterion as well.
All enhanced images are then measured by the EMEE measure
individually. The EMEE results are given in Table IV. The high
EMEE values of PLIP BHE for each image and the average
EMEE values for each enhancement algorithm demonstrate that
PLIP BHE outperforms all other algorithms in this study.

It is also appropriate to comment on the robustness of PLIP
BHE. Many images are consistently difficult to enhance such
as the cell phone images and the copter image. However, they
were rated highly by our subjective evaluation when enhanced
by PLIP BHE. These images show great improvements when
assessed using the EMEE measure. This demonstrates that the
proposed PLIP-based algorithms are useful for difficult cases in
image enhancement.

In summary, the presented PLIP BHE outperforms the other
enhancement methods according to the subjective and objective
analysis. Particularly for difficult-to-enhance images such as
the cave and copter images, the proposed PLIP BHE pro-
vides better visually pleasing results. Moreover, the consistent
performance on all images is important for an enhancement
algorithm. This further demonstrates the performance of the
proposed PLIP BHE. The differences between traditional LIP
and PLIP methods are summarized in Table V.

VIII. CONCLUSION

In this paper, we have introduced a new PLIP model for
improving image processing operations such as image fusion
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Fig. 18. Enhanced results for all images. (a) HE. (b) AR. (c) LIP LA.
(d) PLIP BHE.

TABLE III
SUBJECTIVE EVALUATION OF RESULTS

TABLE IV
OBJECTIVE EVALUATION OF RESULTS

and enhancement. By introducing five new parameters μ, γ, k,
λ, and β, the new PLIP operations have been shown to provide
a more universal and adaptive model that spans from the LIP
to linear model and all cases in between. They include the LIP
operations when μ = γ = k = λ = M and β = 1, as well as
linear arithmetic operations when μ, γ, k, and λ approach the
infinity and β = 1.

Better image fusion performance of the PLIP model has
been proven by comparing the PLIP addition with the linear
arithmetic and LIP additions. We have demonstrated image
fusion properties of the PLIP model: 1) The PLIP addition can
yield the intensity image directly from gray-tone images and
vice versa; 2) the PLIP multiplication can be used for image
fusion, and excellent fusion results can be obtained by choosing
appropriate parameter values; and 3) the exponential parameter
β has been demonstrated to be able to enhance the image fusion
results by the PLIP multiplication.

A training system was presented to help to select these
parameters for the PLIP framework. Training the PLIP model
parameters was demonstrated by selecting the local extrema
from the EMEE versus parameter plots. In addition, we have
demonstrated the effectiveness of the trained model for image
enhancement in both the spatial and transform domains.
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TABLE V
COMPARING THE LIP AND PLIP MODELS BASED ON IMAGING

REQUIREMENTS AND APPLICATIONS

We have presented three novel PLIP-based image enhance-
ment algorithms such as PLIP LA, PLIP BHE, and PLIP AR.
Computer simulations and comparisons have shown that, by
only varying these parameters in the PLIP model, one obtained
more visually pleasing results for image enhancement in both
the spatial and transform domains to meet human expert ap-
proval. Objective image enhancement measures and subjective
visual assessments have demonstrated the improvement of the
PLIP model for image enhancement. The new PLIP model
has potential applications in graphics systems and multimedia
processing applications.

APPENDIX

A. Proofs of the PLIP’s Property 3 in Section II-B

The PLIP operators revert to linear arithmetic operations
when γ(M), k(M), and λ(M) approach the infinity and β = 1

lim
γ(M)→∞

g1⊕̃g2 = g1 + g2 − lim
γ(M)→∞

g1g2

γ(M)
= g1 + g2

lim
k(M)→∞

g1Θ̃g2 = lim
k(M)→∞

k(M)
g1 − g2

k(M) − g2

=
g1 − g2

1 − limk(M)→∞
g2

k(M)

= g1 − g2

lim
γ(M)→∞

c⊗̃g = lim
γ(M)→∞

c︷ ︸︸ ︷
g⊕̃g⊕̃ · · · ⊕̃g

=
c︷ ︸︸ ︷

g + g + · · · + g = cg.

If β = 1, since ϕ̃(g) and ϕ̃−1(g) are continuous functions

lim
λ(M)→∞

ϕ̃(g) = lim
λ(M)→∞

[
−λ(M) ln

(
1 − g

λ(M)

)]

= − lim
λ(M)→∞

ln
(
1 − g

λ(M)

)
1

λ(M)

= − lim
λ(M)→∞

[
ln

(
1 − g

λ(M)

)]′
[

1
λ(M)

]′

= − lim
λ(M)→∞

(
1 − g

λ(M)

)
g

λ2(M)

− 1
λ2(M)

= g.

Similarly, limλ(M)→∞ ϕ̃−1(g) = g. Thus

lim
λ(M)→∞

ϕ̃−1 (ϕ̃(g1) · ϕ̃(g2))

= lim
λ(M)→∞

ϕ̃−1

(
lim

λ(M)→∞
ϕ̃(g1) lim

λ(M)→∞
ϕ̃(g2)

)
= lim

λ(M)→∞
ϕ̃−1 (g1g2) = g1g2.

B. Analysis of the Output Range of the PLIP Operations

We first assume that the input gray tone is within (0, γ(M)].
The PLIP addition can be changed to another format

1 − g1⊕̃g2

γ(M)
=

[
1 − g1

γ(M)

] [
1 − g2

γ(M)

]
≥ 0.

Thus, the output range of the PLIP addition is (0, γ(M)].
The PLIP scalar multiplication can also be rewritten as

1 − c⊗̃g

γ(M)
=

[
1 − g

γ(M)

]c

≥ 0.

The range of the PLIP scalar multiplication is (0, γ(M)].
If the input gray tone is within (0, k(M)], the PLIP subtrac-

tion is rewritten as the following format:

g1Θ̃g2 =
g1 − g2

1 − g2
k(M)

=
{

k(M), for g1 =k(M) and g2 =0
−∞, for g2→k(M).

The range of the PLIP subtraction is (−∞, k(M)].
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